Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dimension reduction (DR) algorithms have proven to be extremely useful for gaining insight into large-scale high-dimensional datasets, particularly finding clusters in transcriptomic data. The initial phase of these DR methods often involves converting the original high-dimensional data into a graph. In this graph, each edge represents the similarity or dissimilarity between pairs of data points. However, this graph is frequently suboptimal due to unreliable high-dimensional distances and the limited information extracted from the high-dimensional data. This problem is exacerbated as the dataset size increases. If we reduce the size of the dataset by selecting points for a specific sections of the embeddings, the clusters observed through DR are more separable since the extracted subgraphs are more reliable. In this paper, we introduce LocalMAP, a new dimensionality reduction algorithm that dynamically and locally adjusts the graph to address this challenge. By dynamically extracting subgraphs and updating the graph on-the-fly, LocalMAP is capable of identifying and separating real clusters within the data that other DR methods may overlook or combine. We demonstrate the benefits of LocalMAP through a case study on biological datasets, highlighting its utility in helping users more accurately identify clusters for real-world problems.more » « lessFree, publicly-accessible full text available April 11, 2026
-
Free, publicly-accessible full text available December 1, 2025
An official website of the United States government
